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Apparent Asymmetry in Fingerprint Similarity
Searching is a Direct Consequence of
Differences in Bit Densities and Molecular Size
Yuan Wang, Hanna Eckert, and J�rgen Bajorath*[a]

Introduction

Fingerprints are bit string representations of molecular struc-
tures and properties used for similarity searching.[1, 2] These
search calculations are conceptually based on the similar prop-
erty principle: similar molecules are thought to have similar
biological activity.[3] In similarity searching, known active com-
pounds are used as templates to search databases for novel
hits. In this context, the evaluation of molecular similarity criti-
cally depends on the application of similarity measures for
quantitative bit string comparison.[1] A variety of similarity met-
rics are being used for this purpose including the popular Tani-
moto coefficient[1] and the Tversky coefficients.[4] As further de-
scribed below, a unique feature of Tversky coefficients is the
ability to put variable weights on the bit settings of molecules
that are compared. By contrast, most similarity measures put
equal weight on template and database compounds. Thus,
these measures are symmetrical in nature, which means that
the results of pairwise molecular comparisons are order-inde-
pendent. Principal and statistical limitations associated with
the use of similarity coefficients have been noted previously[5, 6]

and an elaborate analysis of different similarity measures and
their strengths and weaknesses has been presented.[7]

In a recent communication in this journal, Chen and Brown
have investigated the behavior of Tversky coefficients in large-
scale similarity search calculations using three different 2D fin-
gerprints and found that putting increasingly high weight on
the bit string representations of template compounds pro-
duced higher hit rates than calculations using a symmetrical
coefficient with equal weights on template and database com-
pounds.[8] Chen and Brown interpreted their findings as “the
first evidence of the presence of asymmetry in chemical simi-
larity measures by an empirical study of two large databases”.[8]

The study by Chen and Brown represents an important ad-
vance because it highlights possible complications of molecu-

lar similarity assessment that are often not appreciated and en-
ables further analyses of the observed effects.

We have explored potential reasons for these interesting ob-
servations concerning Tversky similarity calculations and pres-
ent the results of our analysis herein.

Results and Discussion

We begin our analysis with principal considerations about
Tversky coefficients, a class of similarity coefficients with ad-
justable relative weights. For two molecules being compared
and represented by fingerprint bit strings A and B, Tversky co-
efficients (Tv) are defined as follows:

TvðA; B;aÞ ¼ c
aða� cÞ þ ð1 � aÞðb� cÞ þ c

with a in ½0,1�

ð1Þ

Here, a represents the number of bits set on in A, b the
number of bits set on in B, and c the number of bits set to 1
in both bit strings. The a parameter varies between zero and
one and determines the relative weight of uniquely set bits.
For a=0.5 equal weights are put on both molecules (and the
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Recently, systematic similarity calculations using Tversky coeffi-
cients have suggested that putting higher weight on bit settings
of active reference molecules (templates) than database com-
pounds increases hit rates in similarity searching using 2D finger-
prints. These findings have been interpreted as evidence for
“asymmetry” in chemical similarity searching. We have thorough-
ly analyzed this phenomenon and demonstrate that apparent
asymmetry in similarity search calculations is a direct conse-

quence of differences in fingerprint bit densities, which often cor-
relate with differences in molecular size. Accordingly, a size-inde-
pendent fingerprint with constant bit density does not produce
asymmetrical search results. For Tversky similarity calculations,
differences in fingerprint bit densities between active and inactive
compounds determine which weighting factors produce high hit
rates.

ChemMedChem 2007, 2, 1037 – 1042 @ 2007 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim 1037



Tversky coefficient becomes the symmetrical Dice coefficient[1]),
whereas for a>0.5 or a<0.5 more weight is put on bits that
are exclusively set on in A and B, respectively. If molecules A
and B are compared and their bit string representations have
exactly the same number of bits set on, Tversky coefficients
are symmetrical, which means that comparing A with B and B
with A produces the same value. If the bit densities of A and B
differ, the comparison becomes order-dependent for a¼6 0.5
and the corresponding Tversky coefficients are asymmetrical.

On the basis of its formula, we determine Tversky similarities
from relative differences in bit settings generated by a sub-
structure-encoding fingerprint for hypothetical molecules A, B1,
B2, and B3 under systematic variation of a. The corresponding
bit numbers are a, b1, b2, and b3, respectively. Characteristic fea-
tures of Tversky similarity can be best rationalized when study-
ing examples that produce large variations in similarity values.
We found this to be the case when comparing a test molecule
with a sub- and superstructure and, in addition, another mole-
cule having the same fingerprint bit density. In our example,
molecule A sets 50 of 100 hypothetical fingerprint bits to one.
Molecule B1 is a substructure of A having 25 fewer bits set on,
B2 is another molecule that—like A—has also 50 bits set on
but only 37 in common with it, and B3 is a superstructure of A
having 25 more bits set to one. Comparison of A and B1 leads
to a similarity value of 1.0 for a=0, comparison of A and B2 to
0.74 for all a values, and A and B3 to 1.0 for a=1. Thus, for a
values approaching zero or one Tversky similarity calculations
become akin to substructure searching. For a values close to
one, compounds achieve high Tv values if they contain the
query molecule as a substructure. In contrast, for a values ap-
proaching zero, compounds obtain high Tv values if they
themselves are substructures of the query.

Figure 1 shows the similarity curves for comparisons of A
with B1, B2, and B3, respectively. With the exception of the A
versus B2 comparison, convex curves are obtained whose gra-
dients strongly depend on the differences between a and bi.
Assuming c¼6 0, for a>b1Tv values are monotonously decreas-
ing and for a<b3 they are monotonously increasing. Figure 1
also shows the difference in similarity values for comparison of
molecules A with B1 and B3, respectively, when a is set to 0.5
and Tv becomes a symmetrical coefficient. This reflects a gen-
eral bit density-dependence of the Tversky similarity measure.

We go a step further and evaluate potential consequences
of these general Tv characteristics for similarity searching. In
addition to differences in specific bit settings, overall differen-
ces in bit densities also lead to a separation of molecules de-
pending on a parameter values. For example, if active mole-
cules have a comparable bit density but on average a higher
bit density than inactive ones, the a>b1 case applies for the
comparison of active molecules against inactive molecules. As
a consequence, if we increase a, similarity values decrease for
inactive database molecules but are mostly unaffected for
active molecules (case a=b2, see Figure 1) leading to a dese-
lection of inactive compounds. By contrast, if bit strings of
active molecules have similar bit density but systematically
lower bit densities than inactive molecules, the a<b3 case ap-

plies and, according to Figure 1, lowering a will lead to a de-
selection of inactive molecules.

Figure 1 also reveals another general characteristic of the
Tversky coefficient. As discussed above, in its symmetrical ver-
sion (a=0.5), it assigns higher similarity values to molecules
that have more bits set on than to molecules with fewer bits,
even if their distance to an active reference compound A is the
same in “bit string space”. For example, as mentioned above,
molecules B1 and B3 both deviate in exactly 25 bit positions
from A. However, comparison of A and B3 results in a signifi-
cantly higher similarity value than the comparison of A and B1.
This is due to the fact that calculation of Tversky similarity
takes only bits set on (that is, to “1”) into account, which also
applies to the Tanimoto and other coefficients often used in
similarity searching.[1] This property is often referred to as the
size effect[5] because larger molecules tend to set more bits on
than smaller ones and thus often achieve higher similarity
values.

Molecular complexity determines fingerprint bit density and
usually correlates with molecular size. Exceptions include, for
example, polymers where fragment-based fingerprints would
only account for the presence of a monomer, but not the oc-
currence of multiple copies. However, we can generally
assume that notable differences in molecular size are reflected
by corresponding differences in bit density. As can be seen in
Figure 1, the size effect referred to above and the correspond-
ing differences in bit density affect symmetrical Tv calculations
because when compared to A, molecule B1 produces a lower
similarity value than B3. However, under variation of the a pa-
rameter, when Tversky coefficients become asymmetrical, there
is an additional effect. For a>0.5, Tv values for comparison of
a reference molecule with a larger compound further increase,

Figure 1. Tversky coefficient. Reported are Tversky similarity values, Tv ACHTUNGTRENNUNG(A,Bi,
a), for a template molecule A against three different database compounds Bi

(or hypothetical fingerprints with a and bi bits set to one, respectively) as a
function of the weighting parameter a. We study three cases: a>b1 (fewer
bits are set on in B1 than in A), a=b2 (the same number of bits are set on in
both compounds), and a<b3 (more bits are set on in B3). The differences
a�b1 and b3�a are set to be equal. The black bar marks the difference in
the two similarity values of B1 and B3 for a=0.5 (symmetrical Tversky coeffi-
cient). The difference reflects the general bit density dependence of the
Tversky similarity measure.
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whereas with a smaller compound the corresponding values
further decrease. For a<0.5, these effects are reversed. Thus,
on the basis of these considerations, molecular size effects are
thought to systematically affect calculations of Tversky similari-
ty.

To complement our theoretical considerations, we next per-
formed test calculations on different compound data sets that
are summarized in Table 1. For five activity classes and the NCI
background database, we calculated the average number of
nonhydrogen atoms as a measure of molecular size. We also
determined for each compound set the average number of
bits set on in three different fingerprints ; MACCS, TGD, and
PDR-FP (see Experimental Procedures). The results are reported
in Table 1. For our activity classes, average numbers of nonhy-
drogen atoms ranged from 14.0 to 32.3 and for the NCI data-
base, the average number was 25.2. Activity class NNI was as-
sembled to consist of on average much smaller molecules
than the other classes and had significantly lower bit density
for MACCS and TGD. For PDR-FP, bit densities did not vary be-
cause this fingerprint was designed to have a constant
number of bits set on independent of molecular complexity
and size.[9]

We then calculated pairwise Tversky similarities for com-
pounds within each activity class and also between activity
classes and NCI compounds, both under systematic variation
of a parameter values. The results are shown in Figure 2. For
MACCS and TGD, average similarity values within each activity
class formed symmetrical curves with a minimum at a=0.5.
This is the case because for each pair of active molecules A1

and A2, both values Tv ACHTUNGTRENNUNG(A1,A2, a) and Tv ACHTUNGTRENNUNG(A2,A1, a) contribute to
the overall average value. By contrast, average Tv values for ac-
tivity classes against NCI compounds did not follow symmetri-
cal curves but were monotonously decreasing for classes BEN,
CAT, HH2, and TNF but monotonously increasing for NNI. For
the three classes with fingerprint bit densities higher than NCI,
standard deviations of bit densities were very similar (Table 1).
As expected, for NNI, standard deviations were overall smallest
(Table 1). These results were perfectly in accord with our ex-
pectations. As average bit densities were lower for NCI than
BEN, CAT, HH2, and TNF compounds (Table 1), similarity values
decreased for increasing a values and NCI molecules were de-

selected, which corresponds to
the a>b3 case in Figure 1. In
contrast, NNI had a lower aver-
age bit density than NCI leading
to increasing similarity values
when a increased and preferen-
tial selection of NCI compounds,
which corresponds to the a<b1

case in Figure 1. As can be seen
in Figure 2 b, by far the smallest
differences between similarity
values for variation of a were
observed for BEN relative to the
NCI database when using the
TGD fingerprint. This was a con-
sequence of the fact that BEN

and NCI compounds produced nearly the same average bit
density (56.2 versus 55.3, Table 1).

For PDR-FP, average similarities formed no monotonously in-
creasing or decreasing curves but horizontal lines. This was be-
cause PDR-FP has consistently 93 bits set on for each molecule
and, therefore, Tv becomes completely independent of the a

parameter. This is obvious if we transform/reduce the Tversky
formula accordingly:

TvðA; B;aÞ ¼ c
aða� cÞ þ ð1 � aÞðb� cÞ þ c

, TvðA; B;aÞ ¼ c
aða� bÞ þ b

a¼b
��!TvðA; B;aÞ ¼ c

b

ð2Þ

As can be seen in Figure 2, when average similarity values
were calculated, maximal differences and lowest similarity
values between activity classes and NCI compounds for finger-
prints MACCS and TGD were achieved for a=1 (BEN, CAT,
HH2, TNF) or a=0 (NNI).

In similarity searching, hit rates depend on differences be-
tween the distributions of 1) pairwise intraclass similarity
values and 2) similarity values for active versus database com-
pounds. As an example, distributions for activity class HH2 (in-
traclass) and HH2 versus NCI (interclass) are shown in Figure 3.
Until now, we have only considered average similarity values.
However, for the comparison of similarity value distributions,
we also need to take standard deviations into account. First,
the larger the difference between average similarity values is,
the further the distributions are apart. Second, the smaller the
standard deviations are, the narrower the distributions
become. Both effects minimize the overlap and increase hit
rates. In light of its relevance, we have defined a simple mea-
sure that approximates the overlap of two similarity distribu-
tions (see Figure 3). Given two distributions of intraclass simi-
larities (AC) and similarities between active and database mole-
cules (DB), we define the overlap (OV) as :

OV ¼ ðmDB þ sDBÞ�ðmAC�sACÞ: ð3Þ

Table 1. Compound set characteristics.[a]

Code Designation numCpds numHA MACCS
1-Bits

TGD
1-Bits

PDR-FP
1-Bits

BEN Benzodiazepine Agonists 57 25.6 (4.4) 51.1 (8.0) 56.2 (15.3) 93.0 (0.0)
CAT Cathepsin Inhibitors 90 32.3 (7.9) 50.2 (12.4) 87.5 (29.1) 93.0 (0.0)
HH2 Histamine H2 Antagonists 41 27.6 (6.9) 55.6 (11.5) 91.4 (22.4) 93.0 (0.0)
NNI Neuronal Injury Inhibitors 50 14.0 (1.8) 33.7 (9.6) 25.3 (9.4) 93.0 (0.0)
TNF TNF-alpha Release Inhibitors 65 31.0 (8.2) 52.7 (12.9) 82.6 (28.4) 93.0 (0.0)
NCI NCI Anti-AIDS database 42 687 25.2 (12.1) 42.7 (13.6) 55.3 (32.9) 93.0 (0.0)

[a] Five activity classes and the NCI database were used for our statistical analysis. Reported are the number of
compounds (numCpds), average number of nonhydrogen (or heavy) atoms (numHA), and average bit settings
for three different 2D fingerprints : “MACCS 1-Bits”, “TGD 1-Bits”, and “PDR-FP 1-Bits” stand for average number
of bits that are set on (to one) in these fingerprints for the different compound sets. Standard deviations for
the different values are given in parenthesis.
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Here, mAC and mDB are mean values and sAC and sDB standard
deviations of the two distributions. The more the intraclass
similarity distribution AC shifts to the right side of the inter-
class distribution DB, the more the OV value decreases. The OV
value could become negative ((mDB + sDB)< (mAC�sAC)), which
would provide an ideal situation for similarity searching. By
contrast, when AC shifts to the left side of DB, the OV value in-
creases which makes a separation of active and database com-
pounds more difficult.

Plotting OV as a function of the a parameter (Figure 4), we
can determine a values that minimize the overlap between
the distributions and are thus preferred for similarity searching.
These a values (approximated using a step-size of 0.1) are re-
ported in Table 2. For MACCS and TGD, optimal a values were
greater than 0.5 for activity classes CAT, HH2, and TNF, and
smaller than 0.5 for NNI. For BEN, optimal a values were 0.6
for MACCS and 0.5 for TGD whose average bit densities were
nearly identical for BEN and NCI. For PDR-FP, OV was constant
because of its constant bit density and the results of search
calculations were independent of a values. Taken together,
these results confirmed that differences in fingerprint bit densi-
ties determine parameter settings for optimal Tversky similarity
calculations.

We next determined if differences in bit densities also influ-
enced the results presented by Chen and Brown.[8] In addition
to a proprietary corporate compound repository, these investi-
gators also analyzed the NCI anti-AIDS data set. We applied
the same filtering procedure reported by Chen and Brown and
removed compounds having a molecular weight of less then
60 Da or more than 600 Da. The resulting compound set con-
sisted of 38 265 confirmed inactives and 1097 confirmed ac-

Figure 3. Overlap of Tversky similarity distributions. Value distributions for
pairwise Tversky similarities (a=0.5) within activity class HH2 (white) and
between HH2 and the NCI database (dark gray) are shown. The position of
the average value (mHH2 or mNCI) for each distribution is indicated by a dotted
line. The intervals [mNCI �sNCI] and [mHH2�sHH2] are represented by a dark
gray and white box, respectively. The area “OV” (light gray) represents the
overlap of the intervals, as discussed in the text.

Figure 2. Statistical properties of Tversky similarity. For a) MACCS, b) TGD,
and c) PDR-FP, average pairwise Tversky similarities were determined as a
function of the a parameter of the Tversky coefficient within each activity
class (intraclass similarity) and between activity classes and the NCI database
(interclass similarity). Classes are designated according to Table 1.
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tives including moderately active compounds (see Table 3).
These numbers were very similar but not identical to those re-
ported by Chen and Brown, which we attribute to the use of
slightly different (updated) versions of NCI. We then calculated
fingerprint bit densities for active and inactive NCI compounds
(Table 3). For MACCS and TGD, on average five more bits were
set on in active than in inactive compounds, which rationalizes
the preference for a values greater than 0.5 and explains the
slight asymmetry observed in the hit-rate maps of Chen and
Brown that were produced under variation of a.[8]

Similarity coefficients other than the Tversky coefficient are
known to have varying degrees of size dependence.[5, 10, 11] For
example, some coefficients preferentially detect compounds of
different size and differences in fingerprint bit densities are
generally found to affect compound retrieval[10] . Furthermore,
the Tanimoto coefficient has different preferences for molecu-
lar size ranges in similarity calculations (selection on the basis
of high values) and diversity calculations (low values), which
can be attributed to size-dependent differences in fingerprint
bit densities.[11] The study of Chen and Brown went beyond
the analysis of characteristics of symmetrical similarity coeffi-
cients and provided evidence for improved compound recall
when Tversky similarity calculations were carried out in an
asymmetrical manner. We have been able to demonstrate that
the apparent preference for asymmetrical Tversky coefficients
is a direct consequence of systematic differences in fingerprint
bit density between reference and database compounds.

For bit densities that correlate with molecular size, we need
to distinguish three principal cases for the assessment of Tver-
sky similarity. 1) If active compounds are on average larger
than database compounds, a>0.5 produces the highest hit
rates. 2) If active compounds are smaller than database com-
pounds (such as for class NNI in our analysis), a<0.5 gives the
highest hit rates. 3) If there are no differences in bit densities
and size, Tversky similarity calculations are independent of the
a parameter and always symmetrical. Are there consequences
for similarity searching? Sets of active molecules available for
similarity search calculations are typically optimized leads or
drug candidates taken from the scientific or patent literature.
These compounds tend to be larger than average database
molecules. It is therefore not surprising that many activity
classes used in benchmark calculations produce high hit rates

Figure 4. Statistical properties of distribution overlap. The overlap OV be-
tween intraclass and interclass Tversky similarity value distributions is shown
as a function of the a parameter. The representation is according to
Figure 2.

Table 2. Optimal a values.[a]

MACCS TGD PDR-FP

BEN 0.6 0.5 –
CAT 0.6 0.7 –
HH2 0.8 0.6 –
NNI 0.2 0.1 –
TNF 0.6 0.8 –

[a] a values producing minimal overlap between intraclass and class-NCI
Tversky similarity value distributions are shown as determined by graphi-
cal analysis of Figure 4. PDR-FP calculations are independent of a values
because of its constant bit density. Therefore the overlap is also constant
(see Figure 4 c).
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for a values greater than 0.5. However, in practical similarity
search applications, we aim to identify novel hits that are typi-
cally smaller than available templates and still need to be opti-
mized[12] and thus a values smaller than 0.5 would be most rel-
evant.

Conclusions

Application of the Tversky similarity measure makes it possible
to calculate molecular fingerprint similarity in a symmetrical
and asymmetrical fashion. However, similarity calculations have
asymmetrical characteristics only when fingerprints have differ-
ent bit density. For a fingerprint design with constant bit den-
sity such as PDR-FP, Tv calculations are always symmetrical and
independent of a parameter settings. For conventional 2D fin-
gerprints such as MACCS, bit density is usually much influ-
enced by molecular size. Our analysis has uncovered a direct
relationship between fingerprint bit densities and asymmetry
of Tversky similarity calculations and demonstrated that differ-
ences in bit densities determine preferred Tv parameter set-
tings.

Experimental Section

Compound activity classes were extracted from the Molecular
Drug Data Report[13] (MDDR) such that each compound in each set
contained a unique cyclic carbon skeleton.[14] These scaffolds were
generated using an in-house Perl script. Scaffold-based compound
selection was carried out to avoid potential bias from similarity cal-
culations on series of analogues. In the assembly of our compound
sets we also monitored the molecular weight distribution, as dis-
cussed in the text. As background database for similarity searching,
we used the publicly available NCI anti-AIDS database[15] (NCI) that
was also used by Chen and Brown.[8] We also applied similar 2D fin-
gerprints including MACCS structural keys[16] (166 bit positions) and

TGD[17] (420 bits), a 2D two-point
pharmacophore-type fingerprint
that encodes distances between
feature pairs similar to atom-pair
descriptors.[18] In addition, we used
another fingerprint recently devel-
oped in our laboratory, termed
PDR-FP (500 bits), because this has
the unique feature that it produces
a constant bit density (93/500 bits)
for test molecules irrespective of
their size.[9]

Keywords: chemoinformatics · fingerprints · molecular
similarity · Tversky coefficients · virtual screening
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Table 3. Bit statistics of active and inactive NCI compounds.[a]

Data set numCpds numHA MACCS
1-Bits

TGD
1-Bits

PDR-FP
1-Bits

Confirmed actives 255 25.5 53.7 65.4 93.0
Confirmed actives and confirmed moderate actives 1097 24.4 47.1 55.0 93.0
Confirmed inactives 38 265 23.1 42.2 50.5 93.0

[a] Reported are statistics for active and inactive database molecules in the filtered NCI database. Abbreviations
are used as defined in the legend of Table 1.
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